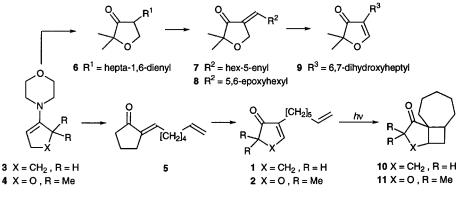
Photoisomerization of 2-(Hept-6-enyl)cyclopent-12-enones to Tricyclo[7.3.0.0^{1,7}]dodecan-12-ones


Rolf Christoph Gebel and Paul Margaretha*

Institut f. Organische Chemie der Universität, D-20146 Hamburg, Germany

J. Chem. Research (S), 1997, 1 *J. Chem. Research (M)*, 1996, 0163–0170

On irradiation (λ >340 nm), the newly synthesized 2-(hept-6-enyl)cyclopent-2-enones **1** and **2** isomerize selectively to the *straight* cycloadducts (tricyclo[7.3.0.0^{1,7}]dodecan-12-ones) **10** and **11**, respectively.

Reports on the photoisomerization of 2-alkenylcycloalk-2-enones to tricycloalkanones have up to now been limited to cyclopent-2-enones or cyclohex-2-enones bearing either a but-3-enyl or a pent-4-enyl side chain on C(2).¹ We now report on the synthesis of two novel five-membered enones bearing a hept-6-enyl side chain on C(2) (1 and 2) and on their photochemical behaviour. 15 days for the conversion of 10^{-3} mol, and led to the formation of only one photoproduct (**10** and **11**) in each case in very low isolated yields (6 and 10%, respectively). This sluggishness in cyclization as compared to the efficient conversion of 2-(pent-4-enyl)cyclopent-2-enones to tricyclodecanones reflects the long-known rate difference in cyclization for an oct-7-enyl radical and a hex-5-enyl radical,⁹ respectively.

Enamines 3 and 4 reacted with hept-6-enal to afford ketones 5 and 6, respectively. The migration of the exocyclic C=C double bond into the five-membered ring was achieved either by heating with HCl in butanol $(5 \rightarrow 1)$ or with RhCl₃ in ethanol⁷ $(7 \rightarrow 2)$. In this latter sequence the terminal C=C double bond was protected as an oxirane (8), which was cleaved by RhCl₃ to a vicinal diol (9). Reductive bis-elimination of OH⁻ using imidazole, chlorodiphenylphosphine, iodine and zinc⁸ afforded the terminal alkene 2.

Irradiations of 1 and 2 in benzene using 350 nm lamps with a cut-off filter <340 nm proceeded very slowly, requiring *ca*.

Techniques used: ¹H NMR, ¹³C NMR, ¹H,¹H-COSY NMR, ¹H,¹³C-COSY NMR, MS

References: 15

Received, 12th August 1996; Accepted, 7th October 1996 Paper E/6/05626A

References cited in this synopsis

- 1 M. T. Crimmins and T. L. Reinhold, Org. React. (N.Y.), 1993, 44, 297.
- 7 J. Andrieux, D. R. R. Barton and H. Patin, J. Chem. Soc., Perkin Trans. 1, 1977, 359.
- 8 Z. Liu, B. Classon and B. Samuelsson, J. Org. Chem., 1990, 55, 4273.
- 9 A. L. J. Beckwith and G. Moad, Chem. Commun., 1974, 472.

^{*}To receive any correspondence.